Signal modeling for isolated word recognition

نویسندگان

  • Montri Karnjanadecha
  • Stephen A. Zahorian
چکیده

This paper presents speech signal modeling techniques which are well suited to high performance and robust isolated word recognition. Speech is encoded by a discrete cosine transform of its spectra, after several preprocessing steps. Temporal information is then also explicitly encoded into the feature set. We present a new technique for incorporating this temporal information as a function of temporal position within each word. We tested features computed with this method using an alphabet recognition task based on the ISOLET database. The HTK toolkit was used to implement the isolated word recognizer with whole word HMM models. The best result obtained based on 50 features and speaker independent alphabet recognition was 98.0%. Gaussian noise was added to the original speech to simulate a noisy environment. We achieved a recognition accuracy of 95.8% at a SNR of 15 dB. We also tested our recognizer with simulated telephone quality speech by adding noise and band limiting the original speech. For this "telephone" speech, our recognizer achieved 89.6% recognition accuracy. The recognizer was also tested in a speaker dependent mode, resulting in 97.4% accuracy on test data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal modeling for high-performance robust isolated word recognition

This paper describes speech signal modeling techniques which are well suited to high performance and robust isolated word recognition. We present new techniques for incorporating spectral/temporal information as a function of temporal position within each word. In particular, spectral/temporal parameters are computed using both variable length blocks with a variable spacing between blocks. We t...

متن کامل

Fuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition

 In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...

متن کامل

Allophone-based acoustic modeling for Persian phoneme recognition

Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...

متن کامل

Using Signal Detection Theory to Investigate the Impact of Mood Induction on Emotional Information Processing in High BAS/BIS Individuals

Objective: The main objective of this study was to investigate the explicit memory bias in the people with high BAS/BIS sensitivity in the different manipulated mood states.  Methods: By using purposive sampling method, seventy-four participants (undergraduate students) were selected based on z-scores of 480 using the Carver and White’s BAS/BIS scale. They were distributed as: 24 wi...

متن کامل

Stroke Level Modeling of on Line Handwriting through Multi-modal Segmental Models

Hidden Markov Models (HMMs) have become within a few years the main technology for on line handwritten word recognition (HWR). We consider here segment models which generalize HMMs, these models aim at modeling the signal at a global level rather than at the frame level and have been shown to overcome standard HMMs in their modeling ability. We propose a new segment model which allows to automa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999